www.rigas.co.kr

RIGAS

Research Institute of Gas Analytical Science

Calibration Gases

Research Institute of Gas Analytical Science

CONTENTS

03 Company Information

on **05** Maintaining Traceability / Product Line

e 06 Atmospheric Environmental Calibration Standards

07 Automobile Exhaust Gas Standards

08 Petrochemical and Natural Gas Standards

.

10 Laser Gas Mixtures **11** Odor Standards

12 Volatile Organic Compound Standards (VOCs)

14 Other Gas Mixtures / Cylinder / Valve

15 RIGAS Regulator for Calibration Gases

03

DS

Company Information

Company specialized in Production, Analysis and Research of Standard Materials

㈜리가스는 다양한 사양의 각종 액체 및 기체표준물질을 제조하고 분석할 수 있는 능력을 보유하고 있으며, 저농도 반응성 성분 가스의 안정도 향상에 필요한 당사 고유의 용기 특수 내면 처리 기술을 적용함으로써 고객이 신뢰할 수 있는 제품을 공급하고 있습니다. ㈜리가스의 모든 표준가스는 초정밀 고용량의 천칭을 사용한 중량법으로 제조되며 각종 성분량은 다양한 전용 가스분석기 등으로 정량화 및 확인하여 그 정확도를 보장합니다.

RIGAS Co., Ltd has the capability to manufacture and analyze various specifications of liquid and gas standard materials and supplies products in which customers can trust by application of our unique special cylinder inner-surface treatment technology essential for improving stability of low concentration reactive gases. Our company also manufactures all standard gases in gravimetric method using high precision high capacity scale and guarantees the accuracy for the concentration of every components by quantifying and verifying it with various gas analyzers.

Company having Corporate-affiliated Research Institute

㈜리가스는 기초연구진흥 및 기술 개발 지원을 기반으로 1999년에 가스분석과학 연구소를 설립하였으며 미개발된 특수 가스와 가스분석의 정확도 개선과 같은 신제품 개발을 위해 활발한 가스분석 연구를 수행해 오고 있습니다.

RIGAS Co., Ltd established Research Institute of Gas Analytical Science in 1999 on the basis of Korea Basic Research Promotion and Technology Development Supporting Act, and has performed gas analysis research actively for development of new products such as undeveloped special gases and improvement of accuracy of gas analysis.

Authorized Standard Gas Testing and Certification Agency in ROK

리가스 부설 가스분석과학연구소는 국립환경과학원으로부터 환경측정용 표준가스 검정을 위한 공인검사기관으로 지정된 기관이며 가스 표준물질의 분석과 실험을 수행합니다. (굴뚝 배기가스 측정기 및 자동차 배기가스 측정 기기용 표준가스)

RIGAS Co., Ltd has been appointed as a government-authorized standard gas testing and certification agency from Korea National Institute of Environmental Research and performs testing and analysis for gaseous standard materials. (Standard gas for calibrating continuous automatic chimney exhaust gas measuring instrument and continuous automatic air measuring instrument)

Company Information

Company History

- **2017.02** Expansion of the 2nd plant in Daedeok Industrial Zone
- 2016. 12 Obtained Clean mark as TOP3 of Reducing Exposure level
- **2016.04** Obtained Youth-friendly hidden champion certificate (Ministry of Employment and Labor)
- 2014. 01 Obtained Certificate of Good Workplace by Risk Assessment (Korea Occupational Safety & Health Agency)
- 2013.10 Selected as a hidden champion (Ministry of Employment and Labor)
- 2012. 01 Changed CEO from Lee Kwang-Woo to Lee Sang-Ho
- 2011.05 Expanded&moved Corporate-affiliated Research Institute to 17-11 Munpyeong-dong
- 2008. 03 Small& Medium Business Technology Innovation Small Group Supporting Project (Korea Technology and Information Promotion Agency for SMEs)

- 2007. 06 Obtained INNO-BIZ Certificate (Small & Medium Business Administration)
- 2007.06 Approved as Company of Daedeok Special R&D Zone (Ministry of Science and Technology)
- 2002. 04 Appointed as Clean Workplace (Korea Occupational Safety & Health Agency)
- **2001.09** Appointed as Standard Gas Testing Agency by Environmental Technology Development Act (Korea National Institute of Environmental Research)
- **1999.12** Obtained Venture Business Certificate (Small & Medium Business Administration)
- **1999. 03** Obtained Certificated of Gas Analysis and Science Research Institute as Corporate-affiliated Research Institute (Korea Industrial Technology Association)
- **1998.09** Established a corporation in Daejeon, Korea.

Certificate of Trademark Registration

Maintaining Traceability

Our analytical operations are traceable through a calibration standard produced to either a recognized international standard such as NIST, VSL, NPL, KRISS or a gravimetrically manufactured Primary Reference Standard traceable to KRISS standard masses.

Product Line

- 1. Atmospheric Environmental Calibration Standards
- 2. Automobile Exhaust Gas Standards
- 3. Petrochemical and Natural Gas Standards
- 4. Laser Gas Mixtures

- 5. Odor Standards
- 6. Volatile Organic Compound Standards (VOCs)
- 7. Other Gas Mixtures

Atmospheric Environmental Calibration Standards

Environment is one of critical element affecting to our life. Therefore, accurate standard gas shall be used to monitor and measure industrial effluents. RIGAS provides high accurate calibration standard gas for measuring various environmental pollutants.

COMPONENTS					
Nitric oxide	NO				
Nitrogen dioxide	NO ₂				
Sulfur dioxide	S0 ₂				
Carbon monoxide	CO				
Oxygen	02				
Hydrogen chloride	HCl				
Hydrogen fluoride	HF				
Ammonia	NH ₃				
Carbon dioxide	CO2				

Mixed Example

Components & Matrix	Nominal Fraction Range				Chalf
	From	То	Unit	Urel (K=2) %	Sneu
Hydrogen chloride Nitrogen	2	10 000	µmol/mol	± 2 ~ ± 5	1 ~ 2 year
Hydrogen fluoride Nitrogen	2	500	µmol/mol	± 2 ~ ± 5	1 ~ 2 year
Nitric oxide	5	5 000	µmol/mol	± 1 ~ ± 3	1 ~ 3 year
Sultur dioxide Carbon monoxide Nitrogen	5	5 000	µmol/mol µmol/mol	Determined i with the cust	n accordance omer's needs

If you have any inquiry on products and mixing besides the above components and concentration, ask for consultation and we will provide further information.

Automobile Exhaust Gas Standards

Environment is one of critical element affecting to our life. Therefore, accurate standard gas shall be used to monitor and measure industrial effluents. RIGAS provides high accurate calibration standard gas for measuring various environmental pollutants.

COMPONENTS				
Carbon dioxide	CO2			
Propane	C ₃ H ₈			
Carbon monoxide	CO			
Oxygen	02			

Mixed Example

cmol/mol = %mol/mol = 10⁻²mol/mol

Component & Matrix	Nominal Fraction Range			$\lim_{n \to \infty} (k-2) \theta$	Evenime
Component & Matrix	From	То	Unit	01et (k=2) %	Ехрії у
Carbon dioxide	10.0	20.0	cmol/mol	± 1 ~ ± 2	1 ~ 3 year
Propane	0.05	0.50	cmol/mol		
Carbon monoxide	2.00	10.0	cmol/mol	Determined i	n accordance
Oxygen	0.10	25.0	cmol/mol	with the customer's needs	
Nitrogen					

If you have any inquiry on products and mixing besides the above components and concentration, ask for consultation and we will provide further information.

Petrochemical and Natural Gas Standards

RIGAS standard material for petrochemical process are supplied in gas and liquid mixture, and multi-compounds standard material such as alkanes, alkens, aromatics or ether.

Group	Components			
	Methane	CH₄		
	Ethane	C ₂ H ₆		
	Ethylene	C ₂ H ₄		
	Propane	C ₃ H ₈		
	Cyclopropane	C ₃ H ₆		
	Propylene	C₃H₅		
	iso-Butane	iso-C4H10		
	n-Butane	n-C4H10		
Hydrocarbons	Propadiene	C ₃ H ₄		
	Acetylene	C ₂ H ₂		
	trans-2-Butene	trans-2-C₄H ₈		
	1-Butene	1-C ₄ H ₈		
Gas or Liquid Mixtures	iso-Butylene	iso-C ₄ H ₈		
	Cyclopentane	C ₅ H ₁₀		
	cis-2-Butene	cis-2-C ₄ H ₈		
	2,2-Dimethyl propane	2,2-C ₅ H ₁₂		
	iso-Pentane	iso-C ₅ H ₁₂		
	n-Pentane	n-C ₅ H ₁₂		
	1,2-Butadiene	1,2-C4H6		
	1,3-Butadiene	1,3-C₄H₅		
	Methyl acetylene	C ₃ H ₄		
	Vinyl acetylene	C ₄ H ₄		
	Ethyl acetylene	C ₄ H ₆		
	trans-2-Pentene	trans-2-C₅H10		
	etc.	-		

Mixed Example-Gas Phase

Nominal Fraction Range Urel (k=2) % **Component & Matrix** Expiry Unit Concentration 0.50 cmol/mol Nitrogen Carbon dioxide 1.00 cmol/mol 8.00 Ethane cmol/mol ±1~±2 1 ~ 3 year Propane 4.00 cmol/mol iso-Butane 1.00 cmol/mol cmol/mol n-Butane 1.00 iso-Pentane 0.05 cmol/mol neo-Pentane 0.05 cmol/mol Determined in accordance 0.05 n-Pentane cmol/mol with the customer's needs 0.05 n-Hexane cmol/mol Methane 84.3 cmol/mol

If you have any inquiry on products and mixing besides the above components and concentration, ask for consultation and we will provide further information. cmol/mol = %mol/mol = 10⁻²mol/mol

Petrochemical and Natural Gas Standards

RIGAS standard material for petrochemical process are supplied in gas and liquid mixture and multi-compounds standard material such as alkanes, alkens, aromatics or ether.

Mixed Example-Gas Phase

Component & Matrix	Nominal Fraction Range		lirel (k=2) %	Evniry		
component a matrix	Concentration	Unit	016t (K-2) /0			
Methane	2.50	cmol/mol				
Ethane	1.00	cmol/mol				
Ethylene	1.00	1.00 cmol/mol		1 2.000		
Propane	0.70	cmol/mol	II~I3	I ~ 5 year		
Propylene	4.00	cmol/mol				
iso-Butane	1.00	cmol/mol				
n-Butane	0.30	cmol/mol				
trans-2-Butene	0.90	cmol/mol				
1-Butene	1.00	cmol/mol				
iso-Butylene	1.50	cmol/mol				
cis-2-Butene	1.00	cmol/mol				
iso-Pentane	1.00	cmol/mol	Determined in accordan			
n-Pentane	0.10	cmol/mol	with the customer's needs			
1,3-Butadiene	0.10	cmol/mol				
1-Pentene	1.00	cmol/mol				
n-Hexane	1.00	cmol/mol				
Nitrogen	81.9	cmol/mol				

Mixed Example-Liquid Phase

Component & Matrix	Nominal Fraction Range		$\lim_{k \to 0} (k-2) \%$	Expiny	
component & Matrix	Concentration Unit		01et (K=2) /6	Exhirà	
Ethane	2.00	cmol/mol			
Ethylene	2.00	cmol/mol			
Propane	35.0	cmol/mol	± 1 ~ ± 3	1 ~ 3 year	
Cyclopropane	0.10	cmol/mol			
Propylene	1.00	cmol/mol			
iso-Butane	20.0	cmol/mol			
trans-2-Butene	0.20	cmol/mol			
1-Butene	0.20	cmol/mol			
iso-Butylene	0.20	cmol/mol	Liquid	phase	
cis-2-Butene	0.20	cmol/mol	(Dip tube + He	head pressure)	
iso-Pentane	0.40	cmol/mol	Determined i	n accordance	
n-Pentane	0.10	cmol/mol	with the cust	omer's needs	
1,3-Butadiene	0.10	cmol/mol			
n-Butane	38.5	cmol/mol			

If you have any inquiry on products and mixing besides the above components and concentration, ask for consultation and we will provide further information. cmol/mol = %mol/mol = 10⁻²mol/mol

cmol/mol = %mol/mol = 10⁻²mol/mol

GAS

Laser Gas Mixtures

RIGAS Excimer laser gas is used widely including semiconductor manufacturing process, medical area or precision process.

- Vision Correction
 - PRK, LASIK
 - ArF = 193 nm
- Angioplasty & TMR
 - XeCl = 308 nm
- Microlithography
 - ArF = 193 nm
 - KrF = 248 nm

Mixed Example

cmol/mol = %mol/mol = 10⁻²mol/mol

Component & Matrix	Excimer Laser Gas Mixtures			
	Туре	Concentration		
Fluorine Argon Neon	ArF (193 nm)	0.2 cmol/mol 9.0 cmol/mol		
Hydrogen Chloride Hydrogen Xenon Neon	XeCl (308 nm)	0.06 cmol/mol 0.03 cmol/mol 1.50 cmol/mol		
Fluorine Krypton Neon	KrF (248 nm)	0.10 cmol/mol 1.00 cmol/mol		

If you have any inquiry on products and mixing besides the above components and concentration, ask for consultation and we will provide further information.

Odor Standards

This is RIGAS Standard gas for detecting and measuring odor. Odor is caused by one or more volatile chemical materials in low density generally, which is recognized by human or animals.

Group	Components			
Formaldehyde	Formaldehyde	НСНО		
	Hydrogen sulfide	H ₂ S		
Sulfur Compounds	Methyl mercaptan	CH₃SH		
Sutur compounds	Dimethyl sulfide	(CH ₃) ₂ S		
	Dimethyl disulfide	(CH ₃) ₂ S ₂		
Nitrogon Compounds	Ammonia	NH3		
Niti ogen compounds	Trimethyl amine	(CH₃)3N		
Aldehydes	Acetaldehyde	CH ₃ CHO		
	Propionaldehyde	C ₂ H ₅ CHO		
	n-Butyraldehyde	n-C3H7CHO		
	n-Valeraldehyde	n-C4H9CHO		
	iso-Valeraldehyde	iso-C4H9CHO		
	iso-Butyl alcohol	iso-C4H9OH		
Alcohol & Ketones	Ethyl acetate	CH ₃ CO ₂ C ₂ H ₅		
	Methyl isobutyl ketone	C4H9COCH3		
	Toluene	C7H8		
BTEXS	Styrene	C8H8		
	p-Xylene	p-C6H4C2H6		
	Propionic acid	C2H5CO2H		
Asida	n-Butyric acid	n-C3H7CO2H		
Acius	n-Valeric acid	n-C₄H₂CO₂H		
	iso-Valeric acid	iso-C4H9CO2H		

GAS

Mixed Example

	Nominal Fraction Range				
Component & Matrix	From	То	Unit	Urel (k=2) %	Expiry
Formaldehyde Nitrogen	2	100	µmol/mol	± 2 ~ ± 5	1 ~ 2 year
Hydrogen sulfide	2	100	µmol/mol	±1~±5	1 ~ 2 year
Nitrogen	Z	100	μποι/ποι	Determined i with the cust	n accordance omer's needs

* If you have any inquiry on products and mixing besides the above components and concentration, ask for consultation and we will provide further information.

Volatile Organic Compound Standards (VOCs)

VOCs in certain period may cause long term damage on human health, so it shall be monitored. The followings are calibration gas of volatile organic compound measuring system supplied by RIGAS, and required and recommended generally.

Group	Components			
	Benzene	C₅H₅		
	Toluene	C ₇ H ₈		
	Ethylbenzene	C6H5C2H5		
	o-Xylene	o-C ₆ H ₄ C ₂ H ₆		
Aromatics	m-Xylene	m-C₀H₄C₂H₀		
	p-Xylene	p-C ₆ H ₄ C ₂ H ₆		
	Styrene	C ₈ H ₈		
	1,2-Dichlorobenzene	1, 2-C6H4Cl2		
	1,2,4-Trimethylbenzene etc.	1, 2, 4-C ₆ H ₃ (CH ₃) ₃ etc.		
PAMs (Ozone Precursors)	Acetylene	C ₂ H ₂		
	Benzene	C6H6		
	Butane	C ₄ H ₁₀		
	1-Buteneetc.	1-C ₄ H ₈ etc.		
	Trichloro fluoromethane	CCl₃F		
	Dichloro difluoromethane	CCl ₂ F ₂		
	1,1,2-Trichloro trifluoroethane	$C_2Cl_3F_3$		
	1,2-Dichloro tetrafluoroethane	1,2-C ₂ Cl ₂ F ₄		
	Methyl chloride	CH ₃ Cl		
	Ethyl chloride	C₂H₅Cl		
	Vinyl chloride	C ₂ H ₃ Cl		
Chlorinated	Methylene chloride	CH ₂ Cl ₂		
Hydrocarbons	Chloroform	CHCl₃		
	Carbon tetrachloride	CCl₄		
	1,1-Dichloroethane	1, 1-C ₂ H ₄ Cl ₂		
	1,2-Dichloroethane etc.	1, 2-C ₂ H ₄ Cl ₂ etc.		

* If you have any inquiry on products and mixing besides the above components and concentration, ask for consultation and we will provide further information.

Volatile Organic Compound Standards (VOCs)

VOCs in certain period may cause long term damage on human health, so it shall be monitored. The followings are calibration gas of volatile organic compound measuring system supplied by RIGAS, and required and recommended generally.

Mixed Example

Component & Matrix	Nominal Fraction Range			Upol $(k-2)$ %	Evning
Component & Matrix	From	То	Unit	01et (K=2) /6	Ехри у
Benzene Toluene Ethylbenzene o-Xylene m-Xylene	1 1 1 1 1	100 100 100 100 100	µmol/mol µmol/mol µmol/mol µmol/mol µmol/mol µmol/mol	±1~±5	1 ~ 3 year
Styrene Nitrogen	1	100		Determined i with the cust	n accordance omer's needs

Component & Matrix	Nominal Fraction Range				_ .
	From	То	Unit	Urel (K=2) %	Expiry
Vinyl chloride 1, 3-Butadiene Dichloromethane Acrylonitrile Chloroform Carbon tetrachloride Benzene 1, 2-Dichloroethane Trichloroethylene Tetrachloroethylene Ethylbenzene	5 5 5 5 5 5 5 5 5 5 5 5 5 5	10 10 10 10 10 10 10 10 10 10 10	μmol/mol μmol/mol μmol/mol μmol/mol μmol/mol μmol/mol μmol/mol μmol/mol μmol/mol	±2~±3	1 ~ 2 year
Styrene Aniline Nitrogen	5	10 10	µmol/mol µmol/mol	Determined in accordance with the customer's needs	

If you have any inquiry on products and mixing besides the above components and concentration, ask for consultation and we will provide further information. G

Other Gas Mixtures

RIGAS also supplies illuminating gas, rare gas or semiconductor gas mixture according to various customer needs. We RIGAS will produce gas at your order.

- Illuminating Gas Mixtures
- Semiconductor Gas Mixtures
- Research and Development Gas Mixtures
- High Purity Gases

- Toxic Gases
- Rare Gases
- Hydrocarbons
- Etc.

Cylinder

Material	Size	Material	Size
Steel	3.4 L	Aluminum	3.7 L
	10 L		10 L
	15 L		15 L
	40 L		30 L
	47 L		Etc.
	118 L		_
	Etc.		

Valve

Standard	Specification	Material		
JIS	W22mm-14th -RH	Brace Ni-Plated SUS		
	W22mm-14th -LH			
	W23mm-14th -RH	Brass		
CGA	CGA 350 825"14NGO-RH-EXT	Brass, Ni-Plated, SUS		
	CGA 510 885″14NGO-LH-INT	Brass		
BS	Valve connector is available			
DIN				

* The above cylinders and valves may be limited depending on the components requested by a customer. Details will be delivered when an estimate is provided.

RIGAS Regulator for Calibration Gases

Specification

- 1Stage(Single-stage) and 2Stage(Double-stage) Construction
- Body : Brass(Ni-Plated), SUS316L
- Seat : PCTFE / PTFE
- Diaphragm : SUS316L / Hastelloy
- Stem : SUS316L
- Temperature Range : -40℃~74℃
- Inlet and outlet port size : 1/4 Inch NPT
- Maximum Inlet Pressure : 25 MPa
- Typical Applications
 - Research Laboratories
 - Gas Chromatography
 - Laser Gas System
 - Process Analyzer
 - Zero & Calibration Gases
 - Purging Systems
 - The following gases can be analyzed : HCl, Amine, BTEX, HCHO, HF, etc.

Order information

Series	Material	Stage	Inlet pressure gauge	Pressure control range	Inlet connections (Nut type)	Outlet connections (Male connector)
G S	S : SUS316L B : Brass (Ni-Plated)	1 : 1stage 2 : 2stage	25 : 25 MPa	06 : 0.6 MPa 10 : 1.0 MPa	R : 22 mm-RH L : 22 mm-LH C : CGA350 N : No option E : etc.	0 : No option 1 : 1/4 inch 2 : 1/8 inch 3 : 1/16 inch 4 : etc.

(주)**리가스 www.rigas.co.kr** E-mail. master@rigas.co.kr Tel. 042-934-6900(0) Fax. 042-935-8814 Address. 본사/1공장, 34301 대전광역시 대덕구 문평동로48번길 142 2공장, 34303 대전광역시 대덕구 문평서로17번길 46

RIGAS Co., Ltd. www.rigas.co.kr/eng/

E-mail. sales@rigas.co.kr Tel. +82-70-5031-6941 Fax. +82-42-935-8814 Address. Headquarter/Plant1. 142, Munpyeongdong-ro 48beon-gil, Daedeok-gu, Daejeon, Korea, 34301 Plant2. 46, Munpyeongseo-ro 17beon-gil, Daedeok-gu, Daejeon, Korea, 34303

